Tackling The Challenges of Big Data

Big Data Analytics
Machine Learning Tools

Tommi Jaakkola
Professor
Massachusetts Institute of Technology

Our Research Group

• Our research focuses on machine learning, from theory, algorithms, to applications
• There are several problems that drive our machine learning research
 - natural language processing (e.g., parsing)
 - recommender systems (e.g., sparsity, scaling, privacy)
 - predictive user modeling (e.g., mobile)
 - uncovering how biological systems work (e.g., reconstructing transcriptional control)
 - large scale inverse problems (e.g., reservoir modeling)
Machine Learning

- Machine learning is about forecasting
- Machine learning methods are computer programs that learn to predict based on data
 - Modern engineering problems are hard to specify, solve directly (e.g., detecting fraudulent transactions)
 - But it is often easy to provide examples of how the system should work (e.g., examples of fraudulent/normal transactions)
Machine Learning

- Machine learning is about forecasting
- Machine learning methods are computer programs that learn to predict based on data
 - modern engineering problems are hard to specify, solve directly (e.g., detecting fraudulent transactions)
 - but it is often easy to provide examples of how the system should work (e.g., examples of fraudulent/normal transactions)
- machine learning methods learn to map descriptions to predictions based on such example data

<table>
<thead>
<tr>
<th>CC transaction</th>
<th>Fraudulent?</th>
</tr>
</thead>
<tbody>
<tr>
<td>description 1</td>
<td>yes</td>
</tr>
<tr>
<td>description 2</td>
<td>no</td>
</tr>
</tbody>
</table>

Machine Learning

- The mapping from examples (e.g., descriptions of transactions) to labels (e.g., fraudulent or not) is known as a classifier

```
transaction as features
  feature 1
  feature 2
  feature 3

classifier

prediction (+1/-1)
```

Machine Learning

- The mapping from examples (e.g., descriptions of transactions) to labels (e.g., fraudulent or not) is known as a classifier
- Simple classification problems are everywhere
 - classifying news articles, images, reviews, etc.
 - classifying biomedical samples, measurements, etc.
 - mapping genotype (SNP) signatures to phenotypes
 - predicting the success of financial strategies, etc.
Machine Learning

- The mapping from examples (e.g., descriptions of transactions) to labels (e.g., fraudulent or not) is known as a classifier.

- Lots of scalable on-line algorithms are available for learning classifiers from data.

Beyond (simple) Classification

- We can extend classifiers to predict more complex objects, not just labels.
 - e.g., annotate genomes (genes, their control)
 - e.g., transcribe speech
 - e.g., map natural language sentences to their syntactic parses

- How do such methods scale?

Beyond (simple) Classification

- We may have lots of data, much of it incomplete, fragmented, potentially erroneous.

- How do we share, distill such data to obtain more accurate predictions?
Beyond (simple) Classification

• We may have lots of data, much of it incomplete, fragmented, potentially erroneous
• How do we share, distill such data to obtain more accurate predictions?
 – e.g., in recommender problems, little data may be available about any particular user (e.g., amazon.com visitor) but there are lots of such users
 – the question is how we can leverage other users’ experiences to better predict the behavior of any particular user?
Structured Prediction

- Natural language processing
 - e.g., tagging, morphological segmentation, parsing
- Computer vision
 - e.g., segmentation, stereo reconstruction, object recognition
- Computational biology
 - e.g., annotation, molecular structures, pathway reconstruction
- Robotics
 - e.g., imitation learning, inverse kinematics
- Human computer interaction
 - e.g., interface alignment, example based design

Structured Prediction: Example

- The goal is to learn to map inputs (sentences) to complex objects (dependency parses)
 - John saw a movie yesterday that he liked

 - in dependency parsing, we draw an arc from the head word of each phrase to words that modify it
 - the parse is a directed tree over the words. In many languages, the tree is non-projective (crossing arcs)
 - each sentence is mapped to arc scores; the parse is obtained as the highest scoring directed tree
Scaling Structured Prediction

- Accurate predictions of complex structures (e.g., dependency trees) require rich scoring functions
- Refined predictions, on the other hand, consume resources
- Three scaling problems we must address:
 - Prediction (inference): finding a single highest scoring tree (a single prediction) can be already provably hard
 - Estimation: learning requires inference making it challenging to estimate models from large corpuses
 - Uncertainty: modeling uncertainty is substantially harder than solving for the highest scoring tree

The Prediction Problem

- The goal is to learn to map sentences (x) to dependency parses (y)

\[
\begin{align*}
\ y = & \quad \text{: john saw a movie yesterday that he liked} \\
\ i = & \quad 1 2
\end{align*}
\]

- The mapping from x to y is typically decomposed into two parts:
 - modeling: using sentence x to specify scores for candidate trees and/or their parts
 - computation: the predicted parse is obtained as the highest scoring tree
- A simple way to score trees is by summing scores for individual arcs ("arc factored scoring")

Prediction, Challenges

- The goal is to learn to map sentences (x) to dependency parses (y)

\[
\begin{align*}
\ y = & \quad \text{: john saw a movie yesterday that he liked} \\
\ i = & \quad 1 2
\end{align*}
\]

- From the point of view of modeling, we would like to include scores for bundles of outgoing arcs ("siblings") instead of just individual arcs
Prediction, Challenges

- The goal is to learn to map sentences (x) to dependency parses (y)

- From the point of view of modeling, we would like to include scores for bundles of outgoing arcs ("siblings") instead of just individual arcs
- But now the prediction problem -- parsing a single sentence -- is computationally hard!

Scaling Prediction (inference)

- We have to find an appropriate balance between accuracy (modeling power) and computation
- Using only the simplest models that scale without effort is limiting... can we do more?

Scaling Prediction (inference)

- We have to find an appropriate balance between accuracy (modeling power) and computation
- Using only the simplest models that scale without effort is limiting... can we do more?
- We can adaptively break (decompose) refined models into smaller loosely coupled pieces
Scaling Prediction (inference)

- We have to find an appropriate balance between accuracy (modeling power) and computation.
- Using only the simplest models that scale without effort is limiting... can we do more?
- We can be adaptively break (decompose) refined models into smaller loosely coupled pieces:
 - easy to solve individually
 - pieces encouraged to agree (adaptively)
 - typically results in the same prediction as the original model

Scaling Structured Prediction

- Accurate predictions of complex structures (e.g., dependency trees) require rich scoring functions.
- Refined predictions, on the other hand, consume resources.
- Three scaling problems we must address:
 ✓ Prediction (inference): finding a single highest scoring tree (a single prediction) can be already provably hard
 ✓ Estimation: learning requires inference making it challenging to estimate models from large corpuses
 ✓ Uncertainty: modeling uncertainty is substantially harder than solving for the highest scoring tree
Tackling The Challenges of Big Data

Big Data Analytics

Machine Learning Tools

Example: Scaling Structured Prediction

THANK YOU
Learning to Recommend

- Many prediction problems can be viewed as matrix completion problems
 - Co-occurrence data
 - e.g., ratings, viewing, purchasing, actions
 - arranged into a large incomplete matrix
 - Goal
 - fill-in missing values in the data matrix

Collaborative prediction
- intuition: borrow experience from other similar users
Learning to Recommend

• Many prediction problems can be viewed as matrix completion problems
 • Co-occurrence data
 – e.g., ratings, viewing, purchasing, actions
 – arranged into a large incomplete matrix
 • Goal
 – fill-in missing values in the data matrix
 • Collaborative prediction
 – intuition: borrow experience from other similar users

Learning to Recommend

• Many prediction problems can be viewed as matrix completion problems
 • Co-occurrence data
 – e.g., ratings, viewing, purchasing, actions
 – arranged into a large incomplete matrix
 • Goal
 – fill-in missing values in the data matrix
 • Collaborative prediction
 – intuition: borrow experience from other similar users

Learning to Recommend

• Many prediction problems can be viewed as matrix completion problems
 • Scaling issues
 – huge matrices (millions x tens of thousands)
 • Statistical issues
 – largely unobserved (e.g., 1%), diverse
 • Modeling issues
 – many interpretations for missing entries
 • Privacy issues
 – how much info to release?
Typical Approach: Factorization

- We reconstruct the data matrix by finding the "simplest" matrix (nearly) consistent with the limited observations

\[Y_{ij} \approx [UV^T]_{ij} \]

- In doing so, we identify "user features" and "item features", and predict by comparing the two

\[U \times V^T \]

Typical Approach: Factorization

- We identify "user features" and "item features", and predict responses by comparing the two

Scaling issues
- huge matrices (millions x tens of thousands)

\[Y_{ij} \approx [UV^T]_{ij} \]
Typical Approach: Factorization

- We identify "user features" and "item features", and predict responses by comparing the two
- Scaling issues
 - huge matrices (millions x tens of thousands)
 - we can estimate each feature coordinate pair at a time

\[
R \times U^T \\
Y_{ij} \approx [U V^T]_{ij}
\]
Approach: factorization

- We identify "user features" and "item features", and predict responses by comparing the two
- **Modeling issues**
 - many interpretations for missing entries
 - need to predict "selections" as well as responses (model selection bias)

\[
Y_{ij} = U_i V_j^T
\]

Movies, books (items)

\[
U_i
\]

Users

\[
V_j
\]

values

\[
Y_{ij}
\]

selections

Approach: Factorization

- We identify "user features" and "item features", and predict responses by comparing the two
- **Privacy issues**
 - how much info (each user needs) to release?
 - need to trade privacy for accuracy
 - users respond to queries about preferences rather than revealing ratings directly

Movies, books (items)

query

Tackling The Challenges of Big Data

Big Data Analytics

Machine Learning Tools

Example: Collaborative Filtering

THANK YOU
Tackling The Challenges of Big Data
Big Data Analytics
Machine Learning Tools

Tommi Jaakkola
Professor
Massachusetts Institute of Technology